

American University of Beirut

Quiz 2: MATH 212
Instructors: Mohammad El Smaily \& Wael Mahboub
November 6, 2015

Duration: 70 minutes

Name (Last, First): \qquad
Student number: \qquad

Circle your instructor's name and your section's number:
M. El Smaily Section: 1 (from 11:00 am to $12: 00 \mathrm{pm}$)
W. Mahboub Section: 2 (from 12:00 pm to 1:00pm),

Section 3 (from 1:00pm to $2: 00 \mathrm{pm}$)

For marker's use only	
Problem	Score
1	$/ 10$
2	$/ 20$
3	$/ 15$
4	$/ 40$
5	$/ 15$
Total	$/ 100$

[10 points] Problem 1. Consider the function $F(x)$ defined over \mathbb{R} by

$$
F(x)=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{7}\right)+b_{n} \sin \left(\frac{n \pi x}{7}\right)
$$

where, for each $n \geq 0, a_{n}$ and b_{n} are given by

$$
a_{n}=\frac{1}{7} \int_{-7}^{7} e^{-4 x} \cos \left(\frac{n \pi x}{7}\right) d x \quad \text { and } \quad b_{n}=\frac{1}{7} \int_{-7}^{7} e^{-4 x} \sin \left(\frac{n \pi x}{7}\right) d x .
$$

(a) (5 points) Find $F(0)$. Then, deduce the value of the sum $\sum_{n=0}^{\infty} a_{n}$. (Justify your answers).
(b) (5 points) Find $F(7)$ and then deduce the value of the sum $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$.
[20 points $=12+8$] Problem 2. Consider the heat problem with homogeneous Dirichlet boundary conditions

$$
u_{t}=u_{x x} \text { for } t>0,0<x<2 ; \quad u(t, 0)=u(t, 2)=0 ; \quad u(0, x)=x \text { for } 0 \leq x \leq 2 .
$$

(a) (12 points) Write down the solution $u(t, x)$ in a series format.
(b) (8 points) Find a lower bound for the time needed so that $u(t, x)$ is approximately $-\frac{4}{\pi} e^{-\pi^{2} t / 4} \sin \left(\frac{\pi x}{2}\right)$ with an error less than 0.01 .
[15 points] Problem 3. Consider the sequence of continuous functions

$$
f_{n}(x)=\left\{\begin{array}{c}
1, \quad x \geq 0 \\
n x+1, \quad-\frac{1}{n} \leq x<0 \\
0, \quad x<-\frac{1}{n} .
\end{array}\right.
$$

(a) (8 points) Find the pointwise limit $f(x)$ over \mathbb{R} and sketch its graph.
(b) (7 points) Does $\left\{f_{n}(x)\right\}_{n}$ converge uniformly to f over \mathbb{R} ? Justify your answer.
[40 points] Problem 4. Let $u(t, x)$ be the solution to the heat problem

$$
\begin{aligned}
& u_{t}(t, x)=u_{x x}+b u+c, \quad t>0, \quad 0<x<1 \\
& u(t, 0)=u(t, 1)=0, \quad t>0 \\
& u(0, x)=400
\end{aligned}
$$

where b and c are two constants. Denote the equilibrium solution of the above problem by $u_{E}(x)$ and let

$$
v(t, x)=e^{-b t}\left(u(t, x)-u_{E}(x)\right)
$$

(a) (10 points) Show that $v(t, x)$ satisfies the simpler PDE $v_{t}=v_{x x}$, for all $t>0, x \in(0,1)$ with boundary conditions $v(t, 0)=v(t, 1)=0$.
(b) (10 points) Set $b=\frac{\pi^{2}}{4}$. Show that equilibrium solution $u_{E}(x)$ is given by

$$
u_{E}(x)=\frac{4 c}{\pi^{2}}\left[\cos \left(\frac{\pi x}{2}\right)+\sin \left(\frac{\pi x}{2}\right)-1\right]
$$

Help: you will need to solve an inhomogeneous ordinary differential equation (after setting $b=\frac{\pi^{2}}{4}$).
(c) (15 points) You can assume the result of part (a) here. Write down $v(t, x)$ in a series format.
Help: make sure that you compute the initial condition $v(0, x)$ in order to find the coefficients of the series. You may also use the formulæ

$$
\begin{aligned}
\cos \left(\frac{\pi x}{2}\right) \sin n \pi x= & \frac{1}{2}[\sin (n+1 / 2) \pi x+\sin (n-1 / 2) \pi x] \text { and } \\
\sin \left(\frac{\pi x}{2}\right) \sin n \pi x & =\frac{1}{2}[\cos (n-1 / 2) \pi x-\cos (n+1 / 2) \pi x]
\end{aligned}
$$

(d) (5 points) Conclude a series formula for the solution $u(t, x)$ of the original problem, where $b=\frac{\pi^{2}}{4}$.
[15 points] Problem 5. Compute the Fourier series of the function $\operatorname{sign}(x)$ defined by 1 for $x \geq 0$, and -1 for $x<0$.

